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Lecture 13

String DACs

Current Steering DACs
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Review from Last Lecture



DAC Architectures
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Benefits of Single-Slope ADC?
• No matching required 

• Very simple structure

• Mostly Digital

• Very low DNL

• Very fine resolution possible

• No previous code dependence

• No binary to thermometer decoder

Limitations of Single-Slope ADC?

• Slow conversion rate

• Large C

• Leakage currents that will be temperature 

dependent

• Nonlinearity in C?

• Nonlinearity in IREF

Can be viewed as a time-domain  DAC where resolution headroom is very large 



DAC Architectures
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Provides DAC with positive and negative outputs

Term “dual slope” means something different here than what

we see in “dual slope” ADCs



DAC Performance Issues and Concerns
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DAC Performance Issues and Concerns
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DAC Performance Issues and Concerns

Previous code dependent glitches Previous code dependent settling



DAC Performance Issues and Concerns

Linear settling of DAC outputs do not affect linearity if all have same settling times

(for both sampled outputs and overall transient response

Incomplete settling introduces nonlinearities in transient response and usually in 

settled response 

Previous code dependent outputs or settling almost always introduces 

nonlinearities

Glitches in output at transition points do not introduce nonlinearities in settled 

outputs but may introduce distortion in continuous-time outputs

Glitches can be many LSB in magnitude and are often previous-code dependent



R-String DAC
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Challenges:
• Managing INL

• Matching (resistors, switches)

• Leakage currents

• Large number of devices for n large (2n

or 2n+1 lines)

• Decoder

• Routing thermometer/bubble clocks

• Transients during Boolean transitions

• Glitches

• Switch implementation

• Thevenin impedance facing VOUT highly 

code dependent

 Simple structure

 Inherently monotone

 Very low DNL

 Potential for being very fast

 Low Power Dissipation

 Widely Used Approach (with appropriate considerations)
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R-String DAC
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Basic  Switch
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Other switch structures (such as bootstrapped switch) used but not for basic string DACs

single n-channel 

device

single p-channel 

device

transmission 

gate switch

• Large number required for large resolution

• Simple structure often used

• Use devices where cross-over occurs

• Good for both high and low term voltages

• Extra clock signal required

• Try to avoid this complexity

• Good when switch terminals near gnd

• Will not turn on when terminals near VDD

• Good when switch terminals near VDD

• Will not turn on when terminals near gnd



Switch Assignment
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Challenges:

n-channel region

p-channel region



Switch Impedances
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Switch Impedances
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size dependent



Switch Parasitics
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• CBD and CBS can be significant and cause rise-fall times to be position dependent

• CGDOL can cause “kickback” or feed-forward

• CGS can slow turn-on and turn-off time of switch



R-String DAC
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Additional Challenges:

• Capacitance on VOUT can be large 
• larger for p-channel devices

• even larger for TG switches 

• Switch impedances position dependent

• Kickback from switches to R-string

• Capacitance on each node (though small) of R-

string from switch

• Thevenin impedance facing VOUT highly 

code dependent

• Gradient effects may cause nonlinearities 

since common-centroid layout may not be 

practical if n is large



R-String DAC
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Additional Challenges

• Delay in Decoder may be significant

• Delay in Decoder may be previous code 

and current code dependent

• Intermediate undesired Boolean outputs 

may occur
o These may cause undesired opening and closing 

of  switches

o Could momentarily short out taps on R-string

o Could introduce transients on all nodes of R-string 

that are code and previous code dependent



R-String DAC
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R-String DAC

Challenges

• Still many signals to route

• Large capacitance on VOUT (over 2n+1

diff caps)

• Multiple previous code dependencies 

cause output transition time to be quite 

unpredictable

• Considerable transients introduced on 

R-string
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• Uses matrix decoder as analog 

MUX  (don’t synthesize decoder)

• Implements binary to decimal 

conversion with pass transistor 

analog logic

• Very structured layout

• Interconnection points are switches 
(combination of n-channel and p-channel)



R-String DAC 
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R-String DAC 

Previous-Code Dependent Settling

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

Tree Decoder

< 0 1 0 >

Example:

V3

Assume all C’s (except those on the R-string) initially with 0V

Red denotes V3, black denotes 0V, Purple some other voltage



R-String DAC 

Previous-Code Dependent Settling
Assume all C’s (except those on the R-string) were initially at 0V

Red denotes V3, green denotes V6, black denotes 0V, Purple some other voltage
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Transition from <010>  to <101>



R-String DAC 

Previous-Code Dependent Settling
• Assume all C’s (except those on the R-string)  were initially at 0V

• Red denotes V3, green denotes V6, black denotes 0V, Purple some other voltage

• Some capacitors may retain values from a previous input for many clock cycles 

for some inputs resulting I previous-previous dependence of even longer

Transition from <010>  to <101>
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White boxes show capacitors dependent 

upon previous code <010>



R-String DAC

Challenges

• Still many signals to route

• Multiple previous code dependencies 

cause output transition time to be quite 

unpredictable

• Uses tree decoder as analog MUX

• Implements binary to decimal 

conversion with pass transistor 

analog logic

• Very structured layout

• Interconnection points are switches 
(combination of n-channel and p-channel)

• Dramatically reduces capacitance 

on output and switching 

capacitances
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R-String DAC 

Tree-Decoder in Digital Domain
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Do the resistors  that form part of PTL dissipate any substantial power?

No because only one will be conducting for any DAC output

Single transistor used at each marked intersection for PTL AND gates

Dramatic reduction in capacitive loading at output

Will become more complicated if both p-channel and n-channel switches needed



Stay Safe and Stay Healthy !



End of Lecture 13


